Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults
نویسندگان
چکیده
Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65 ± 6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults.
منابع مشابه
The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملEndothelial function and white matter hyperintensities in older adults with cardiovascular disease.
BACKGROUND AND PURPOSE The presence of white matter hyperintensities on brain MRI is common among elderly individuals. Previous research suggests that cardiovascular risk factors are associated with increased white matter hyperintensities. Examining the role of direct physiological measures of vascular function will help to clarify the vascular mechanisms related to white matter hyperintensitie...
متن کاملWhite matter integrity in physically fit older adults
BACKGROUND White matter (WM) integrity declines with normal aging. Physical activity may attenuate age-related WM integrity changes and improve cognitive function. This study examined brain WM integrity in Masters athletes who have engaged in life-long aerobic exercise training. We tested the hypothesis that life-long aerobic training is associated with improved brain WM integrity in older adul...
متن کاملWhite matter changes with age utilizing quantitative diffusion MRI.
OBJECTIVE To investigate the relationship between older age and mean cerebral white matter fiber bundle lengths (FBLs) in specific white matter tracts in the brain using quantified diffusion MRI. METHODS Sixty-three healthy adults older than 50 years underwent diffusion tensor imaging. Tractography tracings of cerebral white matter fiber bundles were derived from the diffusion tensor imaging ...
متن کاملAging, Implicit Sequence Learning, and White Matter Integrity
Cognitive neuroscience of aging research investigates neural mechanisms associated with cognitive stability and decline in older versus younger adults. This field has been dominated by neuroimaging techniques that emphasize brain function over structure, gray over white matter, and isolated brain regions over neural networks. Furthermore, the scope of the field has been limited by a focus on ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 110 شماره
صفحات -
تاریخ انتشار 2015